ESSENTIAL OIL COMPOSITION OF Libanotis buchtormensis FROM TAIBAI MOUNTAIN IN CHINA

UDC 547.913

Bo Liang,¹ Bao-Lin Li,^{1*} Fu-Jun Ma,² Zhan-Jun Yang,¹ and Li-Fang Dou¹

The *Libanotis* (Apiaceae family) genus consists of about 60 species widespread in Europe, Africa, Asia, and Oceania [1]. Eighteen Species (eight endemic) are found in China. Most of them grow in grassy places, riverbanks, scrublands, valleys, and sunny rocky slopes at altitudes from 400 to 4100 m [2].

In Chinese traditional medicine, some *Libanotis* species were reported in ancient literature as having various healing effects. The roots of *Libanotis buchtormensis* (Fischer) DC., a wild plant growing in northwest areas of China, are known as *"Yan Feng"* and are used as a herbal remedy for inflammation, rheumatism, pain, and the common cold [2], while the roots of *Libanotis laticalycina*, named *"Fang Feng"* and growing wildly in Hebei, Henan, and Shanxi of China, have been revealed to cure cold, fever, headache, rheumatism, quadriplegia, and stomach ache [1].

Furthermore, the biological activities of *Libanotis* genus, including anti-inflammatory, antipyretic, analgesic [3], and spasmolytic effects [4], have been reported. Investigating the composition of the essential oils from some *Libanotis* genus has become a focus for researching the biological activity of these compounds [5–8].

Although the composition of the essential oil from *Libanotis buchtormensis* depending on the period of the raw material storage [9] and the altitudes of the Altai region [10] has been revealed, so far, there are no reports on the chemical composition of the essential oils from the flowers and the fruits of *L. buchtormensis*. Here, we report on the analysis of the oils from the flowers and fruits of *L. buchtormensis* [18].

The percentage composition of the essential oils is listed in Table 1 along with the retention indices of the identified compounds, where all constituents are arranged in order of their elution on the DB-5MS column. The classification of the identified compounds based on functional groups is summarized at the end of Table 1.

It is evident in Table 1 that there are many qualitative similarities between the two oils, although the amounts of some compounds are different. Furthermore, epiglobulol, germacrene D, β -phellandrene, and α -phellandrene are the major components of the two essential oils. These results indicate that *L. buchtormensis* is a rich source of epiglobulol and germacrene D used as a flavoring agent in the food and perfume industries.

ACKNOWLEDGMENT

The authors are thankful for financial support from the Science and Technology Key Project of the Education Ministry, P. R. China (No. 105153) and the Natural Science Foundation of Shaanxi Province, P. R. China (No. 2004B06).

¹⁾ School of Chemistry and Materials Science, Shaanxi Normal University, Xi'an 710062, China, fax: +86 29 85037774, e-mail: baolinli@snnu.edu.cn; 2) Department of Chemistry, Minority Normal College, Qinghai Normal University, Xining 810001, China. Published in Khimiya Prirodnykh Soedinenii, No. 6, pp. 607-608, November-December, 2007. Original article submitted August 23, 2006.

TABLE 1. The Essential Oil Composition of Libanotis bu	uchtormensis from Taibai Mountain in China*
--	---

Compounds, references	KI ^a	Area,%		Compounds,		Area,%	
	KI	Flowers	Fruits	references	KI ^a	Flowers	Fruits
3-Methyl-1-cyclohexene	786		0.3	Cedrene [11, 14]	1409		1.7
1-Methylethyl-cyclopentane	875		0.1	δ-Elemene [13, 15]	1442	1.8	1.2
α-Pinene [11, 13, 14]	935	10.0	1.6	(<i>E</i>)-3,7-Dimethyl-2,6-	1444		3.0
<i>p</i> -Mentha-1(7),3-diene	975	1.2	0.3	octadienylbutanoic acid ester			
β-Pinene [11, 12, 16]	978	1.2	1.8	α-Caryophyllene [17]	1449	0.5	0.3
α -Phellandrene [12-15]	999	7.9	4.4	(<i>R</i>)-2,4α5,6,7,8-Hexahydro-3,5,5,9-	1468		6.7
<i>p</i> -Mentha-1,4(8)-diene	1011		0.3	tetramethyl-1(H)-benzocycylohene			
o-Cymene [11]	1020	0.6	0.5	Germacrene D [11, 13, 14, 17]	1475	14.9	19.8
β -Phellandrene [11, 14, 15]	1026	34.3	9.9	Humulane-1,6-dien-3-ol	1483	1.4	1.6
3,6,6-Trimethyl-2-norpinene	1029		0.1	Longifolene [12]	1489		1.7
3-Carene	1033		Tr.	Octahydro-2,2,4,7 α -tetramethyl-	1490		
ζ-Terpinene [11, 12, 14, 15]	1055		0.3	$1,3\alpha$ -ethano(1H)inden-4-ol			
2-Methyl-5-(1-methylethyl)-	1064		0.1	Cedr-9-ene	1494		0.5
bicyclo[3.1.0]hexan-2-ol				Cadina-1(10),4-diene [11, 14]	1518	0.7	1.6
4-Thujanol	1070	0.2		(1α,3aα,7α,8aα)-2,3,6,7,8,8α-	1523		Tr.
1,5-Dimethyl-1-vinyl-4-hexenyl-	1093		0.4	Hexahydro-1,4,9,9-tetramethyl-1H-			
anthranilic acid ester				3α ,7-methanoazulene			
trans-1-Methyl-4-(1-methylethyl)-2-	1139		0.1	epi-Globulol [16]	1528	18.5	18.9
cyclohexen-1-ol				2-(3-Isopropenyl-4-methyl-4-	1540		0.7
cis-Sabinenehydrate [12, 15]	1151		0.1	vinylcyclohexyl)propan-2-ol			
(<i>R</i>)-5-Methyl-2-(1-methylethenyl)-4-	1167		0.3	n-trans-Nerolidol [11, 13]	1552		2.9
hexen-1-ol				Guaia-1(5),11-diene	1591		6.1
(R)-(-)- p -Menth-1-en-4-ol	1180			Cubenol	1603		0.1
p-Menth-1-en-8-ol	1205		0.2	Linalyl-2-methybutanoate	1628	1.3	3.5
endo-1,3,3-Trimethyl-2-norboeanol	1244		Tr.	Guaia-1(10)-en-11-ol	1636		0.2
acetate				Geranyl tiglate	1641		0.4
cis-3-Hexenyl isovalerate ester	1258		0.1	τ-Muurolol [12]	1654		0.4
<i>p</i> -Menth-1-en-3-one	1273		Tr.	α-Cadinol [11, 13, 14]	1659		0.6
5-Methyl-2-(1-methylethyl)-4-hexen-1-ol	1288		0.1	(4 <i>α</i> S- <i>cis</i>)-2,4 <i>α</i> ,5,6,7,8,9,9 <i>α</i> -	1689		0.5
acetate				Octahydro-3,5,5-trimethyl-9-			
(1S,2R,4S)-(-)-Borneol acetate	1293		0.2	methylene-1H-benzocycloheptene			
(1S,2R)-(-)-2-Isopropenyl-1-vinyl-p-	1340		0.1	Osthol	2146		0.6
menth-3-ene				Monoterpenes, %		55.2	19.2
Eugenol [11, 12]	1356		0.1	Alcohols, %		20.1	27.4
α-Cubebene [11, 13, 14, 17]	1365		0.3	Sesquiterpenes, %		18.2	41.7
$[1S-(1\alpha, 2\alpha, 3\alpha)]$ -1-Ethenyl-1-methyl-2,4-	1386		1.0	Esters, %		1.3	7.7
bis-(1-methylethenyl)-cyclohexane				Others, %		-	1.1
α -Bourbonene [12]	1390	0.3		Sum, %		94.8	97.1
$[1S-(1\alpha,4\alpha,5\alpha)]$ -1,8-Dimethyl-4-(1- methylethenyl)-spiro[4,5]dec-7-ene	1397		0.2	Yield		0.25	0.76

Tr.: trace < 0.1%.

^aKI: retention indices relative to C₆-C₂₄ *n*-alkanes on the HP-5MS capillary column.

*Identification method: MS, KI (Kovats index).

REFERENCES

- 1. Northwest Institute of Botany, Academia Sinica, (ed.), *Flora Tsinlingensis*, Vol. **1**, Spermatophyta (Pars 3), Beijing, Science Press, 1981.
- 2. M. L. She, G. P. Michael, V. K. Eugene, and F. W. Mark, *Flora of China*, 14, 117 (2005).

- 3. G. J. Chen, Y. Q. Shen, and S. D. Ma, *Shaanxi Xinyiyao* 14 (12), 46 (1985).
- 4. M. G. Pimenov, F.V. Babilev, and G. K. Nikonov, Rast. Resur., 486 (1968).
- 5. A. V. Borovkov and G. M. Petov, *Khim. Prir. Soedin.*, 235 (1967).
- 6. X. S. Tang, D. M. Yang, and K. X. Zhu, Zhongguo Zhongyao Zazhi, 17, 40 (1992).
- 7. N. M. Solodovnichenko, Tr. Khar'kovsk. Farm. Inst., 30 (1962).
- 8. G. A. Stepanenko, A.U. Umarov, and A. L. Markman, *Khim. Prir. Soedin.*, 709 (1972).
- 9. A. V. Tkachev, E. A. Korolyuk, M. S. Yusubov, and A. M. Gur'ev, *Khim. Rast. Syr'ya*, 19 (2002).
- 10. A. V. Tkachev, E. A. Korolyuk, W. Koenig, Y. V. Kuleshova, and W. Letchamo, *J. Essen. Oil Res.*, **18**, 100 (2006).
- 11. N. Aligiannis, E. Kalpoutzakis, I. B. Chinou, and S. Mitakou, J. Agr. Food Chem., 49, 811 (2001).
- 12. T. Bektas, D. Dimitra, S. Atalay, S. Munevver, and P. Moschos, Food Chem., 90, 333 (2005).
- 13. F. Guido, L. C. Pier, and M. Ivano, *Food Chem.*, **91**, 63 (2005).
- 14. R. Li, Z. T. Jiang, and C. Y. Jimmy, *Flavour Fragrance J.*, **20**, 534 (2005).
- 15. R. Oprean, M. Tamas, R. Sandulescu, and L. Roman, J. Pharm. Biomed. Anal., 18, 651 (1998).
- 16. O. Tzakou, M. Couladis, V. Slavkovska, N. Mimica-Dukic, and R. Jancic, *Flavour Fragrance J.*, 18, 2 (2003).
- 17. Q.-B. Wang, Y. Yang, X.-M. Zhao, B. Zhu, P. Nan, J. Y. Zhao, L. Wang, F. Chen, Z. J. Liu, and Y. Zhong, *Food Chem.*, **98**, 52 (2006).
- 18. *The NIST Mass Spectral Search Program for the NIST/EPA/NIH Mass Spectral [DB]*, Library version 1.7 (1999-05-11).